

Linz.js

Linz is a framework for creating administration interfaces. Linz is not a CMS, but is capable of CMS like functionality. Linz is a good choice of framework when the administration interface is the website itself.

Linz is built on Node.js [https://nodejs.org/], Express [http://expressjs.com/] and MongoDB [https://www.mongodb.com/].

Linz is quite new and under rapid development. It is used quite successfully in a number of production sites however. This documentation is the first effort in making this open source project accessible to more developers.

Developer documentation

	Getting started with Linz
	Singleton

	Initialization

	Events

	Directory structure

	Linz defaults
	Setting defaults

	The defaults

	Models
	Mongoose schemas

	Model DSL

	Model statics, virtuals and methods

	Permissions
	Default permissions

	Global permissions

	Model and config permissions function

	API
	error

	formtools

	model

	Session

	Util

	Views

Models

	List DSL
	list.actions

	list.export

	list.fields

	list.filters

	list.groupActions

	list.help

	list.paging

	list.recordActions

	list.showSummary

	list.sortBy

	list.toolbarItems

	Form DSL
	Specialized contexts

	{field-name}.label

	{field-name}.placeholder

	{field-name}.helpText

	{field-name}.type

	{field-name}.default

	{field-name}.list

	{field-name}.visible

	{field-name}.disabled

	{field-name}.fieldset

	{field-name}.widget

	{field-name}.required

	{field-name}.query

	{field-name}.transform

	{field-name}.transpose

	{field-name}.transpose.form

	{field-name}.transpose.export

Features

	Notifications
	API

	req.linz.notifications

	req.flash

	Request namespace
	Model form

	Model list

	Model overview

	Error handling
	Recording errors

	JSON errors

Advanced concepts

	Cell renderers
	Built-in cell renderers

	Custom cell renderers

	Forgot password process
	Send a password reset email

	Verifying ownership of the email address

	Updating the users password

	Security
	CSRF Protection

Contributing documentation

	Getting started with Linz development
	A note on documentation

Example projects

	mini-twitter

About Linz

	Linz definitions

Getting started with Linz

This will help you create a new Linz-based website. If you’d like to develop Linz itself, see Getting started with Linz development.

While we’re working on our documentation, you can get started with Linz via our example project, see mini-twitter.

Linz tries to force as little new syntax on you as possible. Of course, this is unavoidable in certain situations, and there are some conventions you’ll need to learn. We’ve tried to keep them as simple as possible.

Linz does make use of many other open source tools, such as Mongoose or Express. Linz tries to keep the usage of these tools as plain and simple as possible. Linz doesn’t wrap, customise or prettify syntax for other libraries/tools used within Linz. The three primary opensource tools that Linz relies on are:

	Express

	Mongoose

	Passport

The following will be a general overview of some of the core concepts of Linz.

Singleton

When you require Linz, you’re returned a singleton. This has the advantage that no matter where you require Linz, you get the same Linz instance.

Initialization

Linz must be initialized. During initialization, Linz accepts an options object with any of the following optional keys:

	express: An initialized Express intance.

	passport: An initialized Passport instance.

	mongoose: An initialized Mongoose instance.

	options: An options object to customise Linz.

For example:

var express = require('express'),
 mongoose = require('mongoose'),
 passport = require('passport'),
 linz = require('linz');

linz.init({
 express: express(),
 mongoose: mongoose
 passport: passport,
 options: {
 'load configs': false
 }
});

If neither an initialized instance of Express, Passport or Mongoose, nor an options object have been passed, Linz will create them for you:

// Use anything that has been passed through, or default it as required.
this.app = opts.express || express();
this.mongoose = opts.mongoose || require('mongoose');
this.passport = opts.passport || require('passport');

// overlay runtime options, these will override linz defaults
this.options(opts.options || {});

Options object

An object can be used to customize Linz. For example:

linz.init({
 options: {
 'mongo': `mongodb://${process.env.MONGO_HOST}/db`
 }
});

You can read more about Linz defaults.

Events

The Linz object is an event emitter, and will emit the initialized event when Linz has finished initializing.

It will also emit an event whenever a configuration is set (i.e. using the linz.set method). The name of the event will be the same as the name of the configuration that is set.

A common pattern for setting up Linz, using the event emitter, is as follows:

server.js:

var linz = require('linz');

linz.on('initialised', require('./app'));

// Initialize Linz.
linz.init({
 options: {
 mongo: `mongodb://${process.env.DB_HOST || 'localhost'}/lmt`,
 'user model': 'mtUser'
 }
});

app.js:

var http = require('http'),
 linz = require('linz'),
 routes = require('./routes'),
 port = process.env.APP_PORT || 4000;

module.exports = function () {

 // Mount routes on Express.
 linz.app.get('/', routes.home);
 linz.app.get('/bootstrap-users', routes.users);

 // Linz error handling midleware.
 linz.app.use(linz.middleware.error);

 // Start the app.
 http.createServer(linz.app).listen(port, function(){
 console.log('');
 console.log(`mini-twitter app started and running on port ${port}`);
 });

};

Directory structure

Linz expects a common directory structure. If provided, it will load content from these directories. These directories should live alongside your Node.js entry point file (i.e. node server.js).

	models: a directory of model files.

	schemas: a directory of schemas, which are used as nested schemas within a model.

	configs: a directory of config files.

You can read more about each of the above and what Linz expects in the documentation covering each area.

Linz defaults

Linz has a bunch of defaults, which can be use to alter Linz and the way it works. The coverage of the defaults and what they actually do, vary from default to default.

This document outlines the defaults and how they can be used to alter Linz.

Please note: this document is a work in progress and not all defaults have been documented. For a complete list of customizations you can make, view Linz’s defaults [https://github.com/linzjs/linz/blob/master/lib/defaults.js].

Setting defaults

There are two ways to alter the defaults:

	At init time.

	Any other time using the linz.set function.

Read about the Options object for more information about how to set the defaults at init time.

Alternatively, you can set a default using the linz.set function:

var linz = require('linz');

linz.on('initialised', require('./app'));

linz.set('mongo', `mongodb://${process.env.MONGO_HOST}/db`);

The defaults

The following lists the defaults that you can use to customise Linz. Please note, not all defaults are detailed. Please review the code for more information [https://github.com/linzjs/linz/blob/master/lib/defaults.js].

cookie options

This is the options object that is passed to the session middleware, and cookie parser middleware. By default the HttpOnly and SameSite attributes are enabled. The Secure attribute is off by default, but it’s recommended to turn this on if you’re delivering Linz over HTTPS (which we highly encourage).

Review the options for the session middleware [https://github.com/expressjs/session#cookie] and the cookie parser middleware [https://github.com/jshttp/cookie#options].

cookie secret

This is the secret that is used to secure the session cookie used by Linz. You can change this to any string that you’d like. It is passed to the default session middleware and cookie parser middleware.

customAttributes

The customAttributes default allows you to customise the HTML attributes applied to the body. This can be useful for a range of things including targeting styles specific to a custom attribute, or supplying information about the user which can be used by JavaScript widgets.

To use customAttributes define a function with the following signature:

/**
 * @param {Object} req A HTTP request object.
 * @return Array
 */
customAttributes (req)

The function should return an array of objects containing attributes in a name/value pair:

customAttributes (req) => {

 const attributes = [];

 if (req.user && req.user.group) {
 attributes.push({
 name: 'data-linz-usergroup',
 value: req.user.group
 });
 }

 return attributes;

}

This will result in a body tag with custom attributes on all Linz pages:

<body data-linz-usergroup='20'>

routes

The routes default allows you to define middleware that should be executed during the process of specific Linz routes.

To use routes create an object, keyed by a HTTP verb (i.e. get), with the value being an object keyed by a Linz route path, and the value being a middleware function. For example:

const routes = {
 get: {
 '/model/:model/:id/overview': (req, res, next) => {

 // Middleware functionality

 return next();

 },
 },
};

This would result in the middleware being executed whenever an overview page for any record of any model is viewed.

Importantly, the middleware above is executed after Linz middleware processing and before Linz route processing (i.e. where the view is rendered). This gives you great flexibility and also allows you to benefit from all of the work already completed by Linz. For example, you can inspect the record by referencing req.linz.record.

The following is an object containing an example showing all routes you can hook into:

const routes = {
 get: {
 '/models/list': (req, res, next) => next(),
 '/model/:model/list': (req, res, next) => next(),
 '/model/:model/new': (req, res, next) => next(),
 '/model/:model/export': (req, res, next) => next(),
 '/model/:model/:id/overview': (req, res, next) => next(),
 '/model/:model/:id/edit': (req, res, next) => next(),
 '/model/:model/:id/delete': (req, res, next) => next(),
 '/model/:model/:id/json': (req, res, next) => next(),
 '/model/:model/:id/action/:action': (req, res, next) => next(),
 '/configs/list': (req, res, next) => next(),
 '/config/:config/overview': (req, res, next) => next(),
 '/config/:config/edit': (req, res, next) => next(),
 '/config/:config/default': (req, res, next) => next(),
 '/config/:config/json': (req, res, next) => next(),
 },
 post: {
 '/model/:model/list': (req, res, next) => next(),
 '/model/:model/create': (req, res, next) => next(),
 '/model/:model/export': (req, res, next) => next(),
 '/model/:model/:id/save': (req, res, next) => next(),
 '/config/:config/save': (req, res, next) => next(),
 },
};

scripts

The scripts default allows you to customise the external JavaScripts that are loaded on each page in Linz.

To use scripts define a function with the following signature:

/**
 * @param {Object} req A HTTP request object.
 * @param {Object} res A HTTP response object.
 * @return {Promise} Resolves with an array of script objects.
 */
scripts (req, res)

The function should return an array of objects containing the same HTML attributes as the <script> tag:

scripts (req, res) => {

 return Promise.resolve(res.locals.scripts.concat([
 {
 crossorigin: 'anonymous',
 integrity: 'sha256-5YmaxAwMjIpMrVlK84Y/+NjCpKnFYa8bWWBbUHSBGfU=',
 src: '//cdnjs.cloudflare.com/ajax/libs/bootstrap-datetimepicker/4.17.47/js/bootstrap-datetimepicker.min.js',
 },
]));

}

res.locals.scripts contains all the scripts used by Linz, be careful when removing/updating these as it could break functionality within Linz.
You should use the existing array as the array that is resolved with the promise because it will replace res.locals.scripts, not append to it.

The script objects can contain an additional inHead boolean option to optionally load the script in the head tag.

To create data attributes, you can add a dataAttributes property with a key that will be prefixed with data- when output in HTML. For example:

scripts (req, res) => {

 return Promise.resolve(res.locals.scripts.concat([
 {
 dataAttributes: {
 test: 'test',
 },
 },
]));

}

will create the script:

<script data-test="test"></script>

You can also supply a content property, which if provided, will add the value of the content property within the script open and close tags.

session options

This is the options object that is passed to the session middleware. The cookie property is set based on the cookie options default.

Review the options for the session middleware [https://github.com/expressjs/session#cookie] and the cookie parser middleware [https://github.com/jshttp/cookie#options].

styles

The styles default allows you to customise the external CSS stylesheets that are loaded on each page in Linz.

To use styles define a function with the following signature:

/**
 * @param {Object} req A HTTP request object.
 * @param {Object} res A HTTP response object.
 * @return {Promise} Resolves with an array of style objects.
 */
styles (req, res)

The function should return an array of objects containing the same HTML attributes as the <link> tag:

styles (req, res) => {

 return Promise.resolve(res.locals.styles.concat([
 {
 crossorigin: 'anonymous',
 href: '//cdnjs.cloudflare.com/ajax/libs/bootstrap-datetimepicker/4.17.47/css/bootstrap-datetimepicker.min.css',
 integrity: 'sha256-yMjaV542P+q1RnH6XByCPDfUFhmOafWbeLPmqKh11zo=',
 rel: 'stylesheet',
 },
]));

}

res.locals.styles contains all the styles used by Linz, be careful when removing/updating these as it could break functionality within Linz.
You should use the existing array as the array that is resolved with the promise because it will replace res.locals.styles, not append to it.

To create data attributes, you can add a dataAttributes property with a key that will be prefixed with data- when output in HTML. For example:

styles (req, res) => {

 return Promise.resolve(res.locals.styles.concat([
 {
 dataAttributes: {
 test: 'test',
 },
 },
]));

}

will create the script:

<link data-test="test" />

You can also supply a content property, which if provided, will add the value of the content property within a style open and close tags.

mongoOptions

Mongoose’s default connection logic is deprecated as of 4.11.0. mongoOptions contains the minimum default connection logic required for a connection:

'mongoOptions': {
 useMongoClient: true
}

See Mongoose connections [http://mongoosejs.com/docs/guide.html]. for more details and configurations.

404

The 404 default allows you to pass in your own 404 html.

To use 404 define a function with the following signature:

/**
 * @param {Object} req A HTTP request object.
 * @return {Promise} Resolves with the html.
 */
404 (req) => Promise.resolve(html)

The function should return a Promise that resolves with the html string.

Models

One of the primary reasons to use Linz is to ease model development and scaffold highly customizable interfaces for managing these models. Linz provides a simple DSL you can use to describe your model. Using the content of your DSL, Linz will scaffold an index, overview, edit handlers and provide a basic CRUD HTTP API for your model.

All Linz models are bootstrapped with two properties (created by Linz):

	dateCreated with a label of Date created.

	dateModified with a label of Date modified.

Note

Linz will display your models in a list. The label used for each record is derived from the title field, or a virtual title field if one does not exist in your schema.

If your model has a title field, you don’t have to do anything. If your model doesn’t have a title field, you can tell Linz about another field in the schema that you would like used to derive a value and label for each record. The title is the default way to reference a record within Linz.

You create Models in the model directory; one file per model. The file should have the following basic structure:

person.js:

var linz = require('linz');

// Create a new mongoose schema.
var personSchema = new linz.mongoose.Schema({
 name: String,
 email: String
});

// Add the Linz formtools plugin.
personSchema.plugin(linz.formtools.plugins.document, {
 model: {
 label: 'Person',
 description: 'A person.',
 title: 'name'
 },
 labels: {
 name: 'Name',
 email: 'Email'
 },
 list: {
 fields: {
 name: true,
 email: true
 }
 },
 form: {
 name: {
 fieldset: 'Details',
 helpText: 'The users full name.'
 },
 email: {
 fieldset: 'Details'
 }
 },
 overview: {
 body: {
 fields: [
 'name',
 'email',
],
 },
 },
});

var person = module.exports = linz.mongoose.model('person', personSchema);

The file is broken down in the following parts:

	You require Linz, as you’ll need to register the model with Linz.

	Create a standard Mongoose schema.

	Use the linz.formtools.plugins.document Mongoose plugin to register the model with Linz, passing in an object containing Linz’s model DSL.

	Create a Mongoose model from the schema, and export it.

Mongoose schemas

Linz works directly with Mongoose schemas [http://mongoosejs.com/docs/guide.html]. Anything you can do with a Mongoose schema is acceptable to Linz.

Model DSL

Linz uses a Model DSL, which is an object that can be used to describe your model. Linz will use this information to scaffold user interfaces for you. The Model DSL contains six main parts:

	model contains basic information such as the title field, label and description of the model.

	labels contains human friendly versions of your model’s properties, keyed by the property name.

	list contains information used to scaffold the list displaying model records.

	form contains information used to scaffold the edit handler for a model record.

	overview contains information used to scaffold the overview for a model record.

	fields contains directives to enable/disable fields that Linz automatically adds to models.

	permissions is a function used to limit access to a model.

You supply the DSL to Linz in the form of an object, to the linz.formtools.plugins.document Mongoose plugin:

personSchema.plugin(linz.formtools.plugins.document, {
 model: {
 // ...
 },
 labels: {
 // ...
 },
 list: {
 // ...
 },
 form: {
 // ...
 },
 overview: {
 // ...
 },
 fields: {
 // ...
 },
 permissions: function () {
 }
});

Models model DSL

The model keys value should be an object with three keys:

	title is required, unless you have a title field in your schema. If not, you should reference another field in your schema. This field will be used to derive the title for the record, and label for the field.

	label should be a singular noun describing the model.

	description should be a short sentence describing the noun.

The label is used in many places and is automatically pluralized based on the usage context. The description is only used on the Models index within Linz.

For example:

model: {
 label: 'Person',
 description: 'A person.',
 title: 'name'
}

Models label DSL

The label DSL is used to provide a label and description for the model.

The labels keys value should be an object, keyed by field names and strings of the human friendly versions of your field names.

For example:

labels: {
 name: 'Name',
 email: 'Email'
}

You can customize the labels for the default dateModified and dateCreated using this object. You can also supply the key title with a value that should be used for the label of the record’s title.

Models list DSL

The list DSL is used to customize the model index that is generated for each model.

The list keys value should be an Object, containing the following top-level keys:

	actions

	fields

	sortBy

	toolbarItems

	showSummary

	filters

	paging

	groupActions

	recordActions

	export

These allow you to describe how the model index should function. The list DSL is discussed in more detail in List DSL.

Models list DSL function

The list keys value can also be a function. It should be a function with the following signature:

function listDSL (req, callback) {

For example:

{
 list: (req, callback) => callback(null, {
 fields: {...}
 })
}

The function receives a HTTP request object, which provides lots of flexibility to alter the DSL object returned based on the user making the request, and the model record itself.

Models form DSL

The form DSL is used to customize the model record create and edit pages.

The form keys value should be an Object, keyed by field names of the model, in the order you’d like each field’s edit control rendered. For example:

form: {
 name: {
 fieldset: 'Details',
 helpText: 'The users full name.'
 },
 email: {
 fieldset: 'Details'
 }
}

This will generate a form with two fields that you can provide data for. Both fields will appear in the Details fieldset, in the order name and then email.

Each field object can contain the following keys:

	label

	placeholder

	helpText

	type

	default

	list

	visible

	disabled

	fieldset

	widget

	required

	query

	transform

	transpose

	schema

	relationship

These allow you to describe how the create and edit forms should function. The form DSL is discussed in more detail in Form DSL.

Models form DSL function

The form keys value can also be a function. It should be a function with the following signature:

function formDSL (req, callback) {

For example:

{
 form: (req, callback) => callback(null, {
 name: {...}
 })
}

The function receives a HTTP request object, which provides lots of flexibility to alter the DSL object returned based on the user making the request, and the model record itself.

Model permissions

Model permissions is an in-depth topic and should be considered amongst other permission capabilities. Read more about Permissions.

Model statics, virtuals and methods

When working with models, Linz makes use of specific Mongoose statics, virtuals and methods if they’ve been provided.

The following documents them, and their functionality.

listQuery static

You can create a Mongoose static called listQuery for a model with the following signature:

function listQuery (req, query, callback)

If found, Linz will execute this function with req and a Mongoose query before executing it, when retrieving data for the model list view. This provides an opportunity to customise the query before execution.

For example, if you’d like to return more fields from MongoDB than those listed in list.fields you can do it here:

model.static.listQuery = (req, query, callback) => callback(null, query.select('anotherField anotherOne'));

canDelete method

You can create a Mongoose method called canDelete for a model, with the following signature:

function canDelete (req, callback)

If found, Linz will execute this function before rendering the Model index page. This provides an opportunity to customise the delete record action. Because it is a Mongoose method, inside the function this is scoped to the record itself.

The callback has the following signature callback (err, isEnabled, message). isEnabled should be a boolean; true to enable the delete action, false to disable it. If it is disabled, you can use message to provide a message that will be displayed to the user if they click on the delete button.

canEdit method

You can create a Mongoose method called canEdit for a model, with the following signature:

function canEdit (req, callback)

If found, Linz will execute this function before rendering the Model index page. This provides an opportunity to customise the edit record action. Because it is a Mongoose method, inside the function this is scoped to the record itself.

The callback has the following signature callback (err, isEnabled, message). isEnabled should be a boolean; true to enable the edit action, false to disable it. If it is disabled, you can use message to provide a message that will be displayed to the user if they click on the edit button.

Permissions

Linz has a unique permissions model, mostly due to the fact that it assumes nothing (well, nothing that you can’t alter anyway) about your user model; only that you have one.

Many frameworks define a user model that you must adhere to. Linz doesn’t. This provides an opportunity for a simplified yet highly flexible permissions model.

Permissions can be provided for both models and configs.

There are a few contexts you should be aware of.

The full scope of contexts are:

	
	In the context of all models:

	
	models.canList

	
	In the context of a particular model:

	
	model.canCreate

	model.canDelete

	model.canEdit

	model.canList

	model.canView

	
	In the context of all configs:

	
	configs.canList

	
	In the context of a particular config:

	
	config.canEdit

	config.canList

	config.canReset

	config.canView

	config.canView

Linz enforces permissions in two places:

	The UI

	A route execution

Linz will not render buttons, links to or actions for functionality that a user doesn’t have access to. Routes are completely protected. So even if a route was discovered, a user without permissions would not be able to resolve it.

Default permissions

This is Linz’s default permissions implementation:

function (user, context, permission, callback) {
 return callback(true);
}

In short, there are no permissions.

Global permissions

Linz implementations can provide a function (in the options object when initializing Linz) called permissions. It should have the signature:

function permission (user, context, permission, callback)

This function will be called whenever Linz is evaluating the models.canList and configs.canList. Most commonly when generating navigation for a user, but also on the models list and configs list pages.

The user is the user making the request for which permissions are being sought.

The context will be either a string, or an object. If it is a string, it will be either:

// In the context of all models
'models'

// In the context of all configs
'configs'

// In the context of a particular model
{
 'type': 'model',
 'model': 'modelName'
}

// In the context of a particular config
{
 'type': 'config',
 'config': 'configName'
}

The permission will be one of the following strings:

	canCreate

	canDelete

	canEdit

	canList

	canReset (configs only)

	canView

The callback accepts the following signature:

function callback (result)

result is a boolean. Please note, this is different from the standard Node.js callback signature of function callback (err, result). You should design your function so that it returns false in the event of an error and logs the error for a post-mortem.

Throwing errors and failing at the point of checking permissions would not be a good look for anyone, hence the design to not provide this capability. This is something that needs to be handled by a developer.

Model and config permissions function

Determining permissions for models and configs is more contextually sensitive. To do this, when defining a model or config, you can also provide a permissions key.

The key can have a value of either an object or a function. If an object is provided, it is used directly. If a function is provided, you have the benefit of knowing which user the permissions are being requested for. A function should have the following signature:

function modelPermission (user, callback)

The callback accepts the following signature:

function callback (err, result)

err should be null if no error occurred. If an error has occurred, you can return it to the callback which will then default the result to false. result should be an object.

The result object should contain, optionally, the following keys with boolean values:

	canEdit

	canDelete

	canList

	canCreate

	canView

Each key is optional, and defaults to true if not provided. Linz evaluates the values with the === operator so an explicit false must be provided to limit permissions.

API

Linz contains many useful APIs to simplify development.

At present, we’re working on a long term effort to expose all of Linz’s functionality via APIs and have Linz use these APIs itself. This will provide the most flexibility to customise Linz, without having to do the heavy lifting yourself when choosing to change something about Linz.

You can access the Linz APIs via linz.api.

error

error.json(err, statusCode = 500)

Take an Error object and add err and statusCode properties. If an error is encountered by the Linz error handling middleware with these properties, the error will be returned via JSON, rather than HTML.

error.store(err, req)

Take an Error object and store it on req within the Linz namespace at req.linz.error. This becomes useful for logging errors that might be produced by Linz.

formtools

list.getFilters(req)

Get the filters for a request. Used when you want to match a query to what is displayed in the list view.

model

model.generateForm(model, options)

Generate a form in the context of a Linz model. This is useful if you want to customise the form or to present a Linz form other than the create and edit views. This API is also used by Linz internally.

model: object

The mongoose model.

options: object

	Property

	Type

	Description

	form

	Object

	Provide a custom form dsl for the model.

	record

	Object

	Provide a record to prepopulate the form.

	req

	Object

	Provide a req object to customise the form.

	type

	String

	The form type. Can be edit or create (The default).

model.generateFormString(model, options)

Generate form HTML in the context of a Linz model.
This uses model.generateForm to generate the form object and returns the rendered view as a HTML string. Generally, this should be used when you want to render a customised Linz form.

model: object

The mongoose model.

options: object

In addition to the generateForm options, you can also pass in the following options:

	Property

	Type

	Description

	actionUrl

	String

	The form post url.

	cancelUrl

	String

	The url to return to upon cancelling the form.

Session

The methods exposed via the linz.api.session namespace have functionality centered around working with the user session.

session.getTimezone(req)

Get the timezone offset of the current user.

Util

The methods exposed via the linz.api.util namespace have functionality that are broad and general in nature.

util.escape(userInputFromDatabase)

Use this method to escape a string before using it in HTML. This method should be used whenever you’re displaying information from an untrusted source (i.e. information from the database supplied by a user).

Views

The methods exposed via the linz.api.views namespace have functionality centered around working with Linz’s views.

You can use these methods to render your own content, within a Linz template.

views.getScripts(req, res, scripts = [])

Get the scripts that Linz uses for a particular route.

views.getStyles(req, res, scripts = [])

Get the styles that Linz uses for a particular route.

views.notification(noty)

Takes an object, and applies noty defaults to it, making it easy to create noty objects for notifications. You can ready more about Noty options [https://ned.im/noty/#/options].

views.render(options, callback)

Render some HTML, within a Linz template. Useful for developing completely custom page content, without having to provide the Linz basics such as navigation, log out controls, etc.

options: object

options object is used to pass the HTML that should be rendered within the Linz template. The following table describes the properties of the options object.

	Property

	Type

	Description

	header

	HTML

	This is the header of the page. You’ll need to include wrapping div elements in your HTML to make it look like the default.

	body

	HTML

	This is the body of the page. You’ll need to include wrapping div elements in your HTML to make it look like the default.

	page

	HTML

	If provided, header and body are ignored, allowing completely custom content.

	script

	HTML

	This is intended to be <script> tags placed at the bottom (just above </body>).

	template

	String

	Either wrapper or wrapper-preauth. This is the template to use to wrap the provided HTML. Defaults to layout.

callback

callback can be one of two things:

	A standard callback function in the format callback(err, html).

	An Express response (res) object.

If an Express reponse object is provided, Linz will automatically call res.render with the rendered HTML.

Example

const linz = require('linz');

module.exports = function (req, res, next) {

 const locals = {
 header: '<div class="col-xs-12"><div class="model-title"><h1>Header.</h1></div></div>',
 body: '<div class="container linz-container index"><div class="col-xs-12"><p>Body.</p></div></div>'
 };

 linz.api.views.render(locals, req, res, (err, html) => {

 if (err) {
 return next(err);
 }

 return res.send(html);

 });

};

views.viewPath(view)

Returns the complete path to one of Linz’s views.

view: string

view is a string that is the name of a view found within Linz’s views directory.

List DSL

The Models list DSL is used to customise the model index that is generated for each model. The list DSL has quite a few options, as the model index is highly customizable.

list should be an object, containing the following top-level keys:

	actions

	export

	fields

	filters

	groupActions

	help

	paging

	recordActions

	showSummary

	sortBy

	toolbarItems

These allow you to describe how the model index should function.

list.actions

list.actions should be an Array of Objects. Each object describes an action that a user can make, at the model level. Each action should be an Object with the following keys:

	label is the name of the action.

	action is the last portion of a URL, which is used to perform the action.

	modal optionally render the results in a modal view.

For example:

actions: [
 {
 label: 'Import people',
 action: 'import-from-csv',
 modal: true
 }
]

This will generate a button, on the model index, next to the model label. Multiple actions will produce a button titled Actions with a drop-down list attached to it, containing all possible actions.

The evaluated string /{linz-admin-path}/model/{model-name}/action/{action.action} will be prefixed to the value provided for action to generate a URL, for example /admin/model/person/import-from-csv. It is the developers responsibility to mount the GET route using Express, and respond to it accordingly.

The actions will be rendered in the order they’re provided.

If using a modal, make sure the HTML returned from the route starts with <div class="modal-dialog"><div class="modal-content"></div></div>.

list.export

list.export is used to denote that a particular model is exportable. Linz takes care of the exporting for you, unless you want to provide a custom action to handle it yourself.

When a user clicks on an export, they’ll be provided a pop-up modal asking them to choose and order the fields they’d like to export.

list.export should be an Array of Objects. Each object describes an export option, for example:

export: [
 {
 label: 'Choose fields to export',
 inclusions: 'dateModified,dateCreated',
 dateFormat: linz.get('date format'),
 useLocalTime: false,
 modal: false,
 }
]

Each object should contain the following keys:

	label which is the name of the export.

	inclusions which is a list of fields that can be exported.

	dateFormat which allows you to format the exported dates using moment date formats. (Defaults to false)

	useLocalTime which allows you to export date fields in the browsers timezone offset.

	modal optionally render the results in a modal view.

If you’d like to provide your own export route, you can. Replace the inclusions key with an action key that works the same as list.actions. Rather than a modal, a request to that route will be made. You’re responsible for mounting a GET route in Express to respond to it.

list.fields

list.fields is used to customize the fields that appear in the listing on the model index.

list.fields should be an Object, keyed by each field in your model. The value for each key should be true to include the field or false to exclude the field. For example:

fields: {
 name: true,
 username: true
}

Linz will convert the above into the following:

fields: {
 name: {
 label: 'Name',
 renderer: linz.formtools.cellRenderers.default
 },
 username: {
 label: 'Username',
 renderer: linz.formtools.cellRenderers.default
 }
}

If you like, you can pass an object rather than the boolean. This also allows you to customize the cell renderer used to display the data within the column.

If you provide a label, it will override what is defined in the Models label DSL.

The fields will be rendered in the order they’re provided.

list.filters

list.filters can be used to include filters which will alter the data included in the dataset for a particular model. Filters can contain a custom user interface, but Linz comes with a standard set of filters.

list.filters should be an object, keyed by each field in your model. Each object must contain a filter, which should be an object adhering to the Linz model filter DSL. For example:

filters: {
 dateModified: {
 alwaysOn: true,
 filter: linz.formtools.filters.dateRange,
 }
}

The above will allow your model to be filtered by a date range filter, on the dateModified property.

Each filter, keyed by the field name, can have the following keys:

	alwaysOn will ensure that the filter is always rendered in the list view.

	default allows you to provide a default value for the filter. It only takes affect when using alwaysOn.

	filter this is optional, but allows you to specify a filter and should point to a Linz filter, or your own custom one.

	once will ensure that a user can only add that filter once (works well with the boolean filter).

Note

Be aware of the default values. Because of Linz’s internal query structure most filters will need to provide the default value as an array, but there are some exceptions.

Below is an example of the default data type for each filter:

	dateRange: { dateFrom: ['2017-10-15'], dateTo: ['2017-10-28'] }

	date: ['2017-10-01']

	boolean: true

	default, fulltext, list: ['string']

	number: [4]

See also

View the complete list of Linz filters [https://github.com/linzjs/linz/tree/master/lib/formtools/filters].

list.groupActions

list.groupActions can be used to define certain actions that are only available once a subset of data has been chosen.

Each record displayed on a model index has a checkbox, checking two or more records creates a group. If groupActions have been defined for that model, those actions will become choosable by the user.

list.groupActions should be an Array of Objects. Each object describes an action that a user can make, and the object takes on the same form as those described in list.actions.

You’re responsible for mounting a GET route in Express to respond to it.

list.help

The list.help key can be used to provide information for a particular model. The information will appear in a Bootstrap popover [https://getbootstrap.com/docs/3.3/javascript/#popovers].

The list.help key accepts either false, or a Bootstrap popovers options object [https://getbootstrap.com/docs/3.3/javascript/#popovers-options].

list.paging

list.paging can be used to customise the paging controls for the model index. Paging controls will only be shown when the number of results for a model index, are greater than the per page total.

list.paging should be an Object, with the following keys:

	active is an optional Boolean used to turn paging on or off. It defaults to true.

	size is the default page size. It defaults to 20.

	sizes is an Array of the page sizes available for a user to choose from on the model index. It defaults to [20, 50, 100, 200].

For example:

paging: {
 active: true,
 size: 50,
 sizes: [50, 100, 150, 200]
}

If you don’t provide a paging object it defaults to:

paging: {
 active: true,
 size: 20,
 sizes: [20, 500, 100, 200]
}

list.recordActions

list.recordActions can be used to customise record specific actions. These are actions that act upon a specific model record. The actions appear as buttons for each record in a model list. The buttons can either appear in a drop-down list, or next to the edit and delete buttons for the record.

list.recordActions should be an Array of Objects. Each object describes an action that a user can make, specific to the record, and the object takes on the same form as those described in list.actions.

list.recordActions can have an optional key type and when set to primary, the action will be renderered next to the edit and delete buttons for the record (i.e. not within the dropdown). You can also supply a key icon, which if supplied, will be used rather than a label for the button. The value for icon should correspond with name of a Bootstrap glyphicon.

list.recordActions can also accept a function, as the value to a disabled property. If provided, the function will be excuted with the following signature disabled (record, callback). The callback has the following signature callback (error, isDisabled, message). isDisabled should be a boolean. true to disable the record action, false to enable it and you can provide a message if the action is to be disabled.

You’re responsible for mounting a GET route in Express to respond to it.

list.showSummary

list.showSummary can be used to include or exclude the paging controls from a model index.

list.showSummary expects a boolean. Truthy/falsy values will also be interpreted, for example:

showSummary: true

list.sortBy

list.sortBy is used to customise the sort field(s) which the data in the model index will be retrieved with.

list.sortBy should be Array of field names or objects. If using an object, the field property is required for example:

sortBy: [
 'name',
 'username',
 {
 defaultOrder: 'asc',
 field: 'dateModified',
 label: 'Date modified',
 },
]

This Array will be used to populate a drop-down list on the model index. The user can choose an option from the drop-down to sort the list with.

The defaultOrder property is used to set the default ordering of the sort. You may want to change it to desc when you want the latest records first.

list.toolbarItems

list.toolbarItems can be used to provide completely customised content on the toolbar of a model index. The toolbar on the model index sits directly to the right of the Model label, and includes action buttons and drop-downs.

list.toolbarItems should be an Array of Objects. Each object should provide a render key with the value of a Function. The function will be executed to retrieve HTML to be placed within the toolbar. The function will be provided the request req, the response object res and callback function which should be executed with the HTML. The callback function has the signature callback(err, html) For example:

toolbarItems: [
 {
 renderer: function (req, res, cb) {

 let locals = {};
 return cb(null, templates.render('toolbarItems', locals));

 }
 }
]

Form DSL

The Models form DSL is used to customise the create and edit forms that are generated for each model. The form DSL has quite a few options as the model create and edit forms are highly customizable.

The form DSL is used to construct create and edit form controls (for example checkboxes, or text inputs) for a model record. Each key in the form object represents one of your model’s fields.

The type of form control used for each field can be defined explicitly, or determined by Linz (the default) based on the fields data type, as specificed when defining the field with Mongoose.

Each form control comes in the form of a widget, and can be explicitly altered by providing a different Linz widget, or creating your own widget.

form should be an object. It should contain a key, labelled with the name of the model field you’re providing information for.

For example, if you had a model with the fields name and email your form DSL might look like:

form: {
 name: {
 // configure the edit widget for the name field
 },
 email: {
 // configure the edit widget for the name field
 }
}

Each field object can contain the following top-level keys:

	label

	placeholder

	helpText

	type

	default

	list

	visible

	disabled

	fieldset

	widget

	required

	query

	transform

	transpose

These allow you to describe how the model create and edit forms should function.

Specialized contexts

There are two specialized contexts in which the form DSL operates:

	When creating a model

	When editing a model

From time to time, you’ll want to have different settings for one field, based on the context. Linz supports this through use of create and edit keys. Each of the above top-level keys can also be provided as a child of either create and edit. For example:

form: {
 username: {
 create: {
 label: 'Create a username',
 helpText: 'You can\'t change this later on, so choose wisely.'
 },
 edit: {
 label: 'The person\'s username',
 disabled: true,
 helpText: 'Once created, you can\'t edit the username.'
 }
 }
}

You can also use a combination of the default context and the specialized contexts create and edit contexts, for example:

form: {
 username: {
 label: 'The person\'s username',
 edit: {
 label: 'Uneditable username'
 }
 }
}

On the create form, the label for the username field will be The person’s username, but Uneditable username on the edit form.

The specialized create and edit contexts always supersede the default context.

{field-name}.label

The label property is optional. If not provided, it takes the label from the Models label DSL. If a label hasn’t been provided for that particular model field, it simply shows the name of the field itself.

The label property gives you an opportunity to customize it explicitly for the create and edit views.

{field-name}.placeholder

When you have the field of an appropriate type (such as text field), you can define the placeholder which sets the content of the HTML’s <input> tag placeholder attribute.

When used in conjunction with a ref field, it can be used to create optional references. For example, a select in which the first option has no value but contains the placeholder value as the label.

{field-name}.helpText

The helpText property can be used to supply additional text that sits below the form input control, providing contextual information to the user filling out the form.

{field-name}.type

The type property is intended to help Linz with two things:

	Manage the data that the field contains in an appropriate manner.

	To determine which widget to use if the widget property wasn’t provided.

type accepts the following strings:

	array to render checkboxes for multiple select.

	boolean to render radio inputs.

	date to render a date input.

	digit to render a text input with a regex of [0-9]*.

	documentarray to render a custom control to manage multiple sub-documents.

	email to render an email input.

	enum to render a select input.

	hidden to render a hidden input.

	number to render a text input with a regex of [0-9,.]*.

	password to render a password input.

	string to render a text input.

	tel to render a tel input with a regex of ^[0-9 +]+$.

	text to render a text input.

	url to render a url input.

The default widget, and the widget for all other types is the text widget.

{field-name}.default

The default property can be supplied to define the default value of the field. The default if provided, will be used when a field has no value.

If the default property is not provided, Linz will fallback to the default value as provided when defining the Mongoose schemas.

{field-name}.list

The list property is a special property for use with the enum type. It is used to provide all values from which a list field value can be derived.

Please bear in mind, that the list property is not involved in Mongoose validation.

The list property can either be an array of strings, or an array of objects.

For example, an array of strings:

list: ['Dog', 'Cat', 'Sheep']

If an array of objects is supplied, it must be in the format:

form: {
 sounds: {
 list: [
 {
 label: 'Dog',
 value: 'woof.mp3'
 },
 {
 label: 'Cat',
 value: 'meow.mp3'
 },
 {
 label: 'Sheep',
 value: 'baa.mp3'
 }
]
 }
}

There is also a more advanced use case in which you can provide a function which Linz will execute. This will allow you to generate at run time rather than start time, after Linz has been initialized:

form: {
 sounds: {
 list: function (cb) {
 return cb(null, {
 label: 'Dog',
 value: 'woof.mp3'
 },
 {
 label: 'Cat',
 value: 'meow.mp3'
 },
 {
 label: 'Sheep',
 value: 'baa.mp3'
 });
 }
 }
}

{field-name}.visible

The boolean visible property can be set to a value of false to stop the field from being rendered on the form.

{field-name}.disabled

The boolean disabled property can be set to a value of true to render the input field, with a disabled attribute [https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input#attr-disabled].

{field-name}.fieldset

The fieldset property should be supplied to control which fields are grouped together under the same fieldset [https://developer.mozilla.org/en-US/docs/Web/HTML/Element/fieldset].

The fieldset property should be human readable, such as:

form: {
 username: {
 fieldset: 'User access details'
 }
}

{field-name}.widget

The widget property can be set to one of the many built-in Linz widgets [https://github.com/linzjs/linz/tree/master/lib/formtools/widgets]. For example:

form: {
 sounds: {
 widget: linz.formtools.widget.multipleSelect()
 list: [
 {
 name: 'Dog',
 value: 'woof.mp3'
 },
 {
 name: 'Cat',
 value: 'meow.mp3'
 },
 {
 name: 'Sheep',
 value: 'baa.mp3'
 }
]
 }
}

{field-name}.required

The boolean required property can be set to true to require that a field has a value before the form can be saved (using client-side) validation.

{field-name}.query

The query property can be used to directly alter the Mongoose query object that is generated while querying the database for records to display.

query should be an object with the following keys:

	filter

	sort

	select

	label

{field-name}.transform

The transform property will accept a function with the signature:

transform (field, record)

If provided, it will be executed before a record is saved to the database. It is useful if you need to manipulate client side data before it is stored in the database.

In some instances, client side data requirements are different from that of data storage requirements. transform in combination with transpose can be used effectively to manage these scenarios.

{field-name}.transpose

The transpose property will accept an object with context.

Currently, the following contexts are accepted:

	form Used within context of forms and creating and editing model records.

	export Only used for exporting records.

{field-name}.transpose.form

The transpose.form property will accept a function with the signature:

transpose.form (field, record)

If provided, it will be executed before a field’s value is rendered to a form. It is useful if you’d like to manipulate the server-side data that is rendered to a form.

In some instances, data storage requirements are different form that of client side data requirements. transpose in combination with transform can be used effectively to manage these scenarios.

{field-name}.transpose.export

The transpose.export property can accept a function with the signature:

transpose.export (val) => Promise

If provided, it will be executed before a field’s value is exported. It is useful if you’d like to manipulate the server-side data that is rendered to the export csv.

Notifications

Linz provides the ability to pop up notifications, into a Noty message [https://ned.im/noty/#/].

It works well when paired with model, group, overview and record actions that perform a task, and then redirect back to the original page.

When using Linz notifications in this manner, you must make use of connect-flash [https://github.com/jaredhanson/connect-flash] like so:

// Perform task.

// Create the notification.
req.flash('linz-notification', linz.api.views.notification({ text: 'Notification message', type: 'success' }));

// Redirect the user back.
return res.redirect('back');

When the page is rendered, a notification will appear, informing the user that the action they took was successful.

API

There are two APIs for using notifications:

	req.linz.notifications

	req.flash

req.linz.notifications

Before rendering a page, at some point in the route execution middlware, you can populate the req.linz.notifications array with any Noty objects you’d like to be shown. For example:

app.use('/url', (req, res, next) => {

 req.linz.notifications.push(linz.api.views.notification({ text: 'A message here.' }));

 return next();

});

Once the page is rendered, Linz will pick up on this notification and display it for the user.

req.flash

As described above, using the req.flash API for notifications is a handy way to provide the user information about the state of the action they’ve just performed. However, it should always be used in conjunction with res.redirect('back').

To use this API, use req.flash like so:

req.flash('linz-notification', linz.api.views.notification({ text: 'Message here.' }));

The first parameter passed to req.flash must be the string 'linz-notification', otherwise Linz will ignore it. The second parameter passed must be a Noty options object [https://ned.im/noty/#options]. Linz provides a handy API (views.notification(noty)) defaulting some of the options.

Request namespace

Linz adds to the Express req object, an object which you can use to access Linz information about the incoming request.

The Linz namespace exists at:

req.linz

And is a copy of the object you receive when requiring Linz, for example require('linz').

It has the keys:

	notifications which is an array of notifications Linz will display.

	cache which is an internal cache that Linz uses.

Depending on which view is currently being requested, you’ll also get extra information.

The Linz namespace can be used whenever Linz passes you req and becomes a very handy API to get more infromation about the request currently being served.

Model form

The model form, both create and edit views, also recieve:

	model which is a reference to the current model, the basic Mongoose version of the model.

	model.linz which is a reference to the current model, which extra Linz-specific information included.

	model.linz.form which is a reference to the model form DSL.

Model list

The model list view also recieves:

	model which is a reference to the current model, the basic Mongoose version of the model.

	model.linz which is a reference to the current model, which extra Linz-specific information included.

	model.linz.list which is a reference to the model List DSL.

Model overview

The model overview view also recieves:

	model which is a reference to the current model, the basic Mongoose version of the model.

	model.linz which is a reference to the current model, which extra Linz-specific information included.

	model.linz.overview which is a reference to the model overview DSL.

Error handling

Linz consistently manages all errors by passing the error through to next. This allows a consistent approach to error handling and provides a centralised approach to intercept those errors if desired.

Linz provides an error handling middleware at linz.api.middleware.error. You should mount this to your Express app as the last piece of error middleware. It will:

	Log err.stack to console.error.

	Store the error at req.linz.error.

	Return the error in the context of JSON, or display the error in a view.

Recording errors

You can use some middleware to trap all errors that happen within Linz. For example:

module.exports = (req, res, next) => {

 res.on('finish', () => {

 if (req.complete && req.linz && req.linz.error) {
 console.error(req.linz.error);
 }

 });

 return next();

};

JSON errors

If an error occurs within Linz, in the context of a JSON request, Linz will decorate the error with two properties:

	json will be true.

	statusCode will be 500.

If the Linz error handling middleware captures an error with those properties, will return the error via JSON.

Cell renderers

Linz tries to provide as many customisation options as possible. One of those is in the form of a what we call a cell renderer.

Cell renderers can be used within record overviews and model indexes. They’re used to represent data to the user in a human friendly way.

You can do many things with cell renderers that will improve the user experience. For example, you could take latitude and longitude values and render a map, providing visual context about location information specific to the record.

Built-in cell renderers

There are already many built-in cell renderers [https://github.com/linzjs/linz/blob/master/lib/formtools/renderers-cell.js]. They can all be accessed in the following namespace linz.formtools.cellRenderers.

The following shows how to define a specific cell renderer for a list field:

list: {
 fields: {
 websiteUrl: {
 label: 'Website url',
 renderer: linz.formtools.cellRenderers.url
 }
 }
}

The following provides a description of each built-in cell renderer:

	date used with date field types to render a date, as per the date format setting.

	overviewLink can be used to provide a link in the list, to the overview for a particular record.

	array can be used to format an array in the format value 1, value 2, value 3.

	boolean can be used to format a boolean in the format Yes or No.

	reference can be used to render the title for a ref field type.

	url can be used with url field types to render an <a> tag linking to the URL stored as the value of the field.

	documentarray can be used with an embedded document to render a table showing embedded documents.

	text can be used to render text, or any value as it is.

	default is used by Linz as the default cell renderer if a specific type can’t be matched. It attempts to support arrays, dates, numbers, booleans and url field types.

Custom cell renderers

You can quite easily create and use your own cell renderer. All cell renderers must have the same signature:

function renderer (value, record, fieldName, model, callback)

The value is the value that needs to be rendered. The record is a copy of the entire record that the value belongs to. The fieldName is the name of the field that is being rendered. The model is a reference to the model that the record belongs to.

The callback is a function that accepts the standard Node.js callback signature:

function callback (err, result)

The result should be HTML. The HTML will be used directly, without manipulation. As it is HTML, you can provide inline JavaScript and CSS as required to add functionality your cell renderer.

The following is an example of a cell renderer that will look up data for a reference field and render the title:

function renderReference (val, record, fieldName, model, callback) {

 // Make sure we have the neccessary value, without erroring.
 if (!val || typeof val === 'string' || typeof val === 'number') {
 return callback(null, val);
 }

 // Retrieve the related documents title.
 linz.mongoose.models[val.ref].findById(val._id, (err, doc) => {

 if (err) {
 return callback(err);
 }

 return callback(null, (doc && doc.title) ? doc.title : `${val} (missing)`);

 });

};

Forgot password process

Linz has the capability to support a forgot password process. It can be used to allow the user to reset their password.

If enabled, it will render a Forgot your password? link on the log in page, which will facilitate the ability for a user to reset their password. It uses an email as proof of user record ownership. If the user can access a link sent to an email identified with a user record, then they can reset the password.

To enable this process, you need to:

	Have a user model that stores an email address.

	Define a sendPasswordResetEmail Mongoose static [http://mongoosejs.com/docs/guide.html#statics] on your user model.

	Define a verifyPasswordResetHash Mongoose method [http://mongoosejs.com/docs/guide.html#methods] on your user model.

	Define an updatePassword Mongoose static [http://mongoosejs.com/docs/guide.html#statics] on your user model.

The process works as follows:

	User clicks the Forgot your password? link on the log in page.

	The user is directed to the Forgot your password page, and prompted to enter their email address.

	The sendPasswordResetEmail static is executed with the email address they provided.

	The sendPasswordResetEmail static should generate a unique hash for the user, and send an email to the user containing a link to reset their password.

	The user will receive the email, and click on the link.

	The link will be verified by executing the verifyPasswordResetHash method.

	If the password reset hash can be be verified, the user will be provided the opportunity to enter a new password meeting the conditions of the admin password pattern setting.

	The new password will be provided to the updatePassword static to store the updated password against the user record.

More succintly:

	Send a password reset email.

	Verify ownership of the email.

	Collect a new password and update their user record.

Send a password reset email

This part of the process entails:

	Retreiving a user record based on an email address.

	Generating a unique hash for the user record.

	Creating a link for the user to continue the process.

	Sending an email to the email address provided.

These actions should take place within the sendPasswordResetEmail executed by Linz.

The sendPasswordResetEmail static

The sendPasswordResetEmail static should have the following signature:

function sendPasswordResetEmail (userEmail, req, res, callback)

It needs to be a Mongoose static [http://mongoosejs.com/docs/guide.html#statics] on your user model.

userEmail is the email address provided by the user who is trying to reset their password, req is the current request object, res is the current response object and callback is the function to execute when you’ve completed the neccessary steps.

The callback accepts the standard Node.js signature:

function callback (err)

If an Error is provided, Linz will render the error, otherwise it will consider the process complete.

Retrieving a user record based on an email address

Use the userEmail argument to search your user model for a corresponding record. If a record can’t be found, return an Error to the callback.

Make sure you take into consideration the following scenarios:

	Multiple user records associated with the same email address.

	No user record associated with the email address.

Genearing a unique hash for the user record

Once you have the user record, generate a unique hash for the user record. We recommend including the username, _id, email and dateModified.

The hash you generate must be verifyable by generating the same hash, at a later time, with the same information in the database (i.e. username, _id, email and dateModified).

A good Node.js package to consider to generate a hash is the bcrypt.js [https://www.npmjs.com/package/bcryptjs] package.

Creating a link to verify email address ownership

Once you have the unique hash, and the records _id value you can use linz.api.url.getAdminPasswordResetLink(id, hash) to generate a url. Pass in the _id and hash and Linz will safely add those to the url it returns.

Send an email

Once you have the link, you simply need to send it to the email address with instructions on what to do next; click on the link.

This is something you’ll have to implement yourself. Linz does not provide any capabilities to send emails. Linz is based on Express though, so you have all of it’s templating capabilities at hand. See using template engines with Express [https://expressjs.com/en/guide/using-template-engines.html].

Verifying ownership of the email address

This part of the process involves verifying ownership of the email address. The user will receive the email, and click on the link. We want to make sure the link hasn’t been tampered with and that we can generate the same hash that was provided in the link.

Linz will retrieve the hash from the url and pass it to the verifyPasswordResetHash method.

It must be a Mongoose method [http://mongoosejs.com/docs/guide.html#methods] on your user model.

Your verifyPasswordResetHash Mongoose method should have the following signature:

function verifyPasswordResetHash (candidateHash, callback)

The candidateHash is the hash value that was retreived from the Url. The callback is a standard Node.js callback:

function callback (err, result)

The result should be a boolean value.

Your verifyPasswordResetHash method should go through the same process to create the hash as it did in the first process. It should then verify that the candidateHash is the same as your freshly generated hash using the data from your database.

If the candidateHash checks out and you can successfully match it, return true to the callback.

Updating the users password

If the hash was verified, the user is provided an opportunity to enter a new password. The new password must meet the requirements of the admin password setting.

The new password is provided to the updatePassword Mongoose static [http://mongoosejs.com/docs/guide.html#statics] on your user model. The updatePassword static should have the following signature:

function updatePassword (id, newPassword, req, res, callback)

id is the _id of the user model record. newPassword is the new password provided by the user. req is the current request object. res is the current response object. callback is a standard Node.js callback:

function callback (err)

If an Error is provided, Linz will render the error, otherwise it will consider the process complete.

The user will be notified that their password has been updated, and prompted to log into Linz again.

Security

Linz comes with a number of security features out of the box including:

	CSRF Protection

CSRF Protection

CSRF protection helps prevent unauthorized commands that are transmitted from a user that the web application trusts.

You can read more about CSRF on OWASP [https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)].

Customising CSRF

Linz uses the csurf module [https://github.com/expressjs/csurf] to provide CSRF protection.

To customise the options you can supply Linz with the option 'csrf options: {}'. It accepts an object with the same properties as the csurf module:

linz.init({
 'options': {
 'csrf options': {},
 },
});

Custom error handler

CSRF errors throw an error with the code err.code === 'EBADCSRFTOKEN'. You can use this in your error handlers to display a custom message.

For example, here is a snippet from the linz error middleware:

module.exports = function (err, req, res, next) {

 if (err.code === 'EBADCSRFTOKEN') {
 err.message = (!req.body._csrf || req.body._csrf === 'undefined') ? 'No CSRF token was provided.' : 'The wrong CSRF token was provided.';
 }

 ...

}

Adding CSRF protection to a custom form

The csurf module exposes the csrf token via req.csrfToken().

When implementing a custom page with a form, make sure to pass the following hidden input:

<input type="hidden" name="_csrf" value="{{csrfToken}}">

This is handled automatically for you when using linz.api.model.generateFormString(). Just make sure to add the csrfToken option:

linz.api.model.generateFormString(linz.api.model.get('user'), { csrfToken: req.csrfToken() });

Getting started with Linz development

The linz [https://github.com/linzjs/linz] repository is a complete environment for hacking on Linz. Using Node.js Docker, and a few commands, you’ll have a complete development environment up and running in no time.

Visit the linz [https://github.com/linzjs/linz] repository for more information on how to get started hacking on Linz.

A note on documentation

Documentation is now a primary concern for the project. All PRs should be accompanied with updated documentation that describes in detail how to use a new feature, new capability, updates to an existing DSL or a new DSL.

mini-twitter

Mini Twitter is a complete working example of Linz. Head over to the mini-twitter [https://github.com/smebberson/linz-minitwitter-basic] GitHub repository to download mini-twitter and check out Linz.

Linz definitions

The following are a list of words you’ll see used many times in the Linz documentation. You can familiarize yourself with our terminology here.

	DSL

	Domain specific language. Linz uses these frequently to take instruction as to how certain functionality should be scaffolded.
There is a DSL for Models, Configurations and Schemas.

Index

Overview DSL

The Models overview DSL is used to customise the record overview that is generated for each record.
It is highly customizable and allows you to display sections, tabs, or something completely custom.

overview should be an object, containing a body array and an optional actions array.

Body

Inside of the body array you can have:

	An object to display a section.

	An array of objects to display a section in tabs.

	A function to display custom HTML.

overview: {
 body: [
 {...},
 [...],
 () => {...},
],
},

Object

To display a normal section, you can use an object with the keys fields and label:

overview: {
 body: [
 {
 fields: [
 'nameOfField1',
 {
 fieldName: 'nameOfField2',
 renderer: somecellrenderer,
 },
],
 label: 'Section heading',
 },
],
},

fields is an array that accepts field names as strings which will auto format the fields for you or objects where you have to provide the fieldName and renderer.

label is the section heading string.

Tabs

To display a section as tabs, use an array of objects.

Each object will have an identical syntax to a normal section.:

overview: {
 body: [
 [
 {
 fields: [
 'nameOfField1',
 {
 fieldName: 'nameOfField2',
 renderer: somecellrenderer,
 },
],
 label: 'Section heading 1',
 },
 {
 fields: [
 'nameOfField3',
 {
 fieldName: 'nameOfField4',
 renderer: somecellrenderer,
 },
],
 label: 'Section heading 2',
 },
],
],
},

Custom HTML

You can also render some custom HTML in a section.

To do this, pass a function that accepts the following parameters:

	req - The HTTP request object.

	res - The HTTP response object.

	record - The overview record.

	model - The record model.

	cb - A standard callback function.

overview: {
 body: [
 (req, res, record, model, cb) => cb(null, 'Custom HTML section'),
],
},

Actions

actions is an array of objects that take the same syntax as record actions. It can contain the following keys:

- ``label`` is the name of the action.
- ``action`` is the last portion of a URL, which is used to perform the action.
- ``modal`` optionally render the results in a modal view.

For example:

overview: {
 actions: [
 {
 label: 'Import people',
 action: 'import-from-csv',
 modal: true,
 },
],
}

 _static/up-pressed.png

_static/up.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Linz.js

 		
 Getting started with Linz

 		
 Singleton

 		
 Initialization

 		
 Options object

 		
 Events

 		
 Directory structure

 		
 Linz defaults

 		
 Setting defaults

 		
 The defaults

 		
 cookie options

 		
 cookie secret

 		
 customAttributes

 		
 routes

 		
 scripts

 		
 session options

 		
 styles

 		
 mongoOptions

 		
 404

 		
 Models

 		
 Mongoose schemas

 		
 Model DSL

 		
 Models model DSL

 		
 Models label DSL

 		
 Models list DSL

 		
 Models form DSL

 		
 Model permissions

 		
 Model statics, virtuals and methods

 		
 listQuery static

 		
 canDelete method

 		
 canEdit method

 		
 Permissions

 		
 Default permissions

 		
 Global permissions

 		
 Model and config permissions function

 		
 API

 		
 error

 		
 error.json(err, statusCode = 500)

 		
 error.store(err, req)

 		
 formtools

 		
 list.getFilters(req)

 		
 model

 		
 model.generateForm(model, options)

 		
 model.generateFormString(model, options)

 		
 Session

 		
 session.getTimezone(req)

 		
 Util

 		
 util.escape(userInputFromDatabase)

 		
 Views

 		
 views.getScripts(req, res, scripts = [])

 		
 views.getStyles(req, res, scripts = [])

 		
 views.notification(noty)

 		
 views.render(options, callback)

 		
 views.viewPath(view)

 		
 List DSL

 		
 list.actions

 		
 list.export

 		
 list.fields

 		
 list.filters

 		
 list.groupActions

 		
 list.help

 		
 list.paging

 		
 list.recordActions

 		
 list.showSummary

 		
 list.sortBy

 		
 list.toolbarItems

 		
 Form DSL

 		
 Specialized contexts

 		
 {field-name}.label

 		
 {field-name}.placeholder

 		
 {field-name}.helpText

 		
 {field-name}.type

 		
 {field-name}.default

 		
 {field-name}.list

 		
 {field-name}.visible

 		
 {field-name}.disabled

 		
 {field-name}.fieldset

 		
 {field-name}.widget

 		
 {field-name}.required

 		
 {field-name}.query

 		
 {field-name}.transform

 		
 {field-name}.transpose

 		
 {field-name}.transpose.form

 		
 {field-name}.transpose.export

 		
 Notifications

 		
 API

 		
 req.linz.notifications

 		
 req.flash

 		
 Request namespace

 		
 Model form

 		
 Model list

 		
 Model overview

 		
 Error handling

 		
 Recording errors

 		
 JSON errors

 		
 Cell renderers

 		
 Built-in cell renderers

 		
 Custom cell renderers

 		
 Forgot password process

 		
 Send a password reset email

 		
 The sendPasswordResetEmail static

 		
 Retrieving a user record based on an email address

 		
 Genearing a unique hash for the user record

 		
 Creating a link to verify email address ownership

 		
 Send an email

 		
 Verifying ownership of the email address

 		
 Updating the users password

 		
 Security

 		
 CSRF Protection

 		
 Customising CSRF

 		
 Custom error handler

 		
 Adding CSRF protection to a custom form

 		
 Getting started with Linz development

 		
 A note on documentation

 		
 mini-twitter

 		
 Linz definitions

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

